NREL/China Study Tour

Jim Ohi
National Renewable Energy Laboratory
April 25, 2000

- Fuel Cells
 - Basic Principles, Technology Overview
- Industry Activity
 - Development of Fuel Cell Vehicles
- Sustainable Transportation
 - Strategic Implications of Fuel Cells
 - Fuel Choice

NREL CENTER FOR TRANSPORTATION TECHNOLOGIES AND SYSTEMS

Fuel Cells

- Basic Principles
- Overview of Fuel Cell Technologies
 - Status
 - Applications
 - Federal Agency Activities

- Very high energy conversion efficiencies
- Fuel flexible
- Zero or very low emissions
- Mobile and stationary applications
- Modular

Fuel Cell Technologies

	PEFC	PAFC	MCFC	SOFC
Electrolyte	Ion Exchange Membrane	Immobilized Liquid Phosphoric Acid	Immobilized Liquid Molten Carbonate	Ceramic
Operating Temperature	80°C	205°C	650°C	800-1000°C now, 600- 1000°C in 10 to 15 years
Charge Carrier	H*	H°	CO3	0-
External Reformer for CH ₄ (below)	Yes	Yes	No	No
Prime Cell Components	Carbon-based	Graphite-based	Stainless Steel	Ceramic
Catalyst	Platinum	Platinum	Nickel	Perovskites
Product Water Management	Evaporative	Evaporative	Gaseous Product	Gaseous Product
Product Heat Management	Process Gas + Independent Cooling Medium	Process Gas + Independent Cooling Medium	Internal Reforming + Process Gas	Internal Reforming + Process Gas

Advantages and Disadvantages

PEFC	AFC	PAFC	MCFC	SOFC
Solid Electrolyte Low Temperature Rapid Response High Current Density Little Gas X-over	First Modern FC Low Temperature Space Applications Excellent O ₂ kinetics Catalyst Flexibility	Acid Electrolyte (CO ₂ tolerant) Medium Temperature No Membrane Atmospheric Pressure Commercial Use Co-gen Possible	Higher Temperature Cheaper Catalysts Internal Reforming Use CO as Fuel Co-gen CO ₂ tolerant (biogas) Co-gen	Solid Electrolyte Highest Temperature Ceramic Construction Fast Kinetics Internal Reforming Use CO as Fuel Fabrication Co-gen
Expensive Catalysts CO Poisoning Expensive Materials Machining Thermal Management Water Management Durability	Pure Hydrogen Pure Oxygen Limited Development for Terrestrial Uses	Expensive Catalysts External Reforming CO Poisoning Water-shift	Corrosive CO2 Required Low S Tolerance Mechanical Stability	Thermal Expansion Sealing Material Selection Fabrication Electrical Resistivity

Schematic of Fuel Cell

NREL CENTER FOR TRANSPORTATION TECHNOLOGIES AND SYSTEMS

Introduction: Stacks and Cells

Fuel Cell Stacks are composed of a number of fuel cells electrically connected in series.

Federal Agencies

- DOE/EE: \$32M PEMFC, \$25M H₂R&D
- DOE/FE: \$50M Stationary Systems
- DOT/FTA: Hydrogen Bus Demos
- NASA: Advanced Shuttle FC, RegenFC
- DOD/ARPA: Portable Systems, DMFC

- Daimler-Chrysler-Ford-Ballard
- Toyota
- **GM**
- Honda
- ZEVCo
- Ballard-GPU
- PlugPower (Detroit Edison-GE)

Ford P2000 Fuel Cell Car

Daimler-Chrysler Jeep Commander

GM Precept Fuel Cell Car

Daimler-Benz NECAR III

Daimler-Benz NEBUS

NREL CENTER FOR TRANSPORTATION TECHNOLOGIES AND SYSTEMS

Daimler-Chrysler necar 4

BMW Series 700 Hydrogen Vehicle

Toyota

RAV4 EV (also FCV)

Honda Insight Hybrid Electric Vehicle

NREL CENTER FOR TRANSPORTATION TECHNOLOGIES AND SYSTEMS

ZEVCO Alkaline Fuel Cell Taxi

NREL CENTER FOR TRANSPORTATION TECHNOLOGIES AND SYSTEMS

Hydrogen Gas Station in Hamburg, Germany

Integrated Electricity and Heat Production

Modular, Distributed Generation

Fuel Flexible

Zero-emission, Depending on Fuel

Grid-connected or Grid-independent

Thermal Energy Temperature 140 degree F hot water (60 degree C)

Electrical Efficiency 40 % Total Efficiency (Electric + Heat) 80%

Natural Gas Consumption 1,900 cubic feet per hour

Pollutant Emissions less than 6 ppmv (total)

- Strategic Potential of Fuel Cells
 - Fuel Choice
 - Transportation
 - Distributed generation
 - Integration of renewable energy and fuels

- Strategic Implications
 - Fuel choice is critical
 - Fuel cells can integrate renewable energy, fuels, and technologies
 - Renewable Energy Power Packages
 - Transportation
 - Direct ethanol fuel cells
 - Renewable hydrogen fuel cells
 - Fuel cell hybrid electric vehicle systems

Why Fuel Choice is Important

US Transportation Energy Flow 1992

14.6Q wasted heat, other losses

Source: Bassett, EPA

Alternative Pathways: Renewable and Non-renewable

Renewable pathways

Non-renewable pathways

Hybrid electric vehicle

Alternative Pathways: Liquid vs. Gaseous Transportation Fuels

Primary energy resources

Natural Gas

Intermediate energy carriers

CNG

Hydrogen

Engine technologies

Spark-ignited

Fuel cell

Alternative Pathways: Liquid vs. Gaseous Light-Duty Vehicle Fuel Transitions

Fuel Choice: Convergence of Key Factors

- Storing hydrogen vs. reforming liquid fuels
 - Direct storage options are limited and may be problematic
 - high-pressure gaseous or cryogenic storage
 - weight, temperature requirements for chemical storage
 - advanced materials, e.g., carbon nanotubes
 - On-board reforming options may be problematic
 - thermal integration, fuel requirements, gas purity, efficiency
 - start-up and transient response, catalysts, emissions
 - controls and packaging
 - cost

Key Questions

- feedstocks (fuel sources) anticipated for fuel/reformer technology
- total costs for fuel system options and anticipated life cycle emissions for each option
- regulatory requirements needed for commercial development and implementation, e.g., codes and standards, DOT rating, other permits
- vehicle-system process integration required

Fuel Choice: Critical Issue

- Fuel Choice is a critical issue for national energy policy
 - Hydrogen is an enabling technology that links renewable energy and zero-emission technologies
 - Fossil-based fuels and engine technologies have a longhistory of development and are continually improving
- Fuel Choice is a multifaceted issue with many competing options available
 - Complex tradeoffs will be made among all of the key criteria

Sustainable Energy Production

- Strategic Implications of Fuel Cells
 - Renewable Energy Power Packages
 - Distributed Generation
 - biomass-fired fuel cells
 - wind, solar electrolyzer-fuel cells
 - integrated building energy systems

Conclusion

- Fuel cells can lead the way to sustainable transportation and use of energy resources
 - link zero emission energy conversion and renewable fuels
 - renewable hydrogen production
 - bioethanol production